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ON THE INTEGRABLE CASE OF A RI~NN-HI~ERT BOUNDARY VALUE PROBLEM FOR TWO 
FUN&TIONS AND THE SOLUTIONS OF CERTAIN MIXED PROBLEMS FOR A 

COMPOSITE ELASTIC PLANE* 

I .V. SIMONOV 

A method for solving the Riemann-Hilbert boundary value problem with 
piecewise-constant coefficients is generalized /I/. It is shown that the 
following static problems of a composite elastic plane with three kinds 
of connection conditions allow of exact solutions: 1) the splicing line 
Is weakened by a system of loaded slots and a transverse shear crack or 
the edges of one of the slots are partially contacting, or one of the 
slots is cleaved by a rigid insert; 2) the splicing line is reinforced 
by a system of thin rigid inclusions and there is one arbitrarily located 
delamination zone; 3) the elastic half-planes are contacting (with slip) 
on a certain section of their boundaries, and mixed boundary conditions 
in the displacements and stresses are given on the rest of the boundaries. 

In the general case the Riemann-Hilbert boundary value problem for 
many functions reduces to the problem of a linear conjugation, and then to 
Fredholm integraliZqs./2/. Closed solutions are obtained in certain 
special cases /3-5/. For applications we mention the papers f6, 7/, 
where problems are considered concerning slits at the interface of two 
elastic media with two kinds of physical boundary conditions taken into 
account simultaneously. 

1. We consider the following boundary value problem of the theory of functions of a 
complex variable, It is required to find the vector function ~(z)=(Q)~(z), a,(z)) which is 
analytic in the upper z = f + iy half-plane, vanishes at infinity, and is continuously 
continuable on the real axis y = +O except, perhaps, at the points 
k = 1, . 

h 4. ff (1 ak 1. 1 bk 1 > f, 
. .,N, 2<MN(m) in whose neighbourhoods the following estimates hold: 

1 Q, I< C! 12 - up* c>cJ. O,<p<l f4.f) 

where a is any ofthepoints ak, br. =t !, fox the following boundary conditions: 

Im (D@)(5) = f(r) on I = (2 = I 7 i0, zf (I) (I.3 
D=D,. x~l, (m = 0, I, 2); f (4 f H, (f (4 - 0, lJI--c~) 
I, = 1 -1, I 1, Ii = {akbl), I, = 1 - I, - I, 

where D is a non-singular piecewise-constant matrix. 
Therefore, the solution of the Riemann-Hilbert problem (1.2) is sought in the class of 

functions ho /2/ defined by the estimates (1.1) and the condition at infinity. The domain 
boundary is separated into a system of intervais 1,,12 and the isoiated interval la. Without 
loss of generality, we set j(5)= 0, rs IO, and D, = E where E is the unit matrix. 

In the trivial case of triangular matrices D, and D, the vector problem (1.2) splits at 
once into a chain of sequentially solvable scalar problems. If one of the matrices D,,D, 
contains just imaginary elements, then equaiity of two tout of the three) matrices D can be 
achieved at the beginning by a linear transformation of the desired function, and we then 
arrive at a conjugate problem allowin,- of splitting by reduction of the matrix coefficient of 
the problem to a diagonal or triangalar form. 

The case is examined belowwhen the upper rows o f the matrices D, and D, are real, while 
the lower rows are imaginary numbers. The linear substitution @"= DE'@, where D,’ is a 
real matrix formed from elements of the matrix D, (the upper rows of these matrices coincide 
while the lower rows differ only by the factor if, reduces to problem (1.2) in which 

&j==d,j+O, m,j=l,2 

The bar denotesthe complex conjugate and the superscript ' on the vector function is 
omitted. 

The problem remains essentially connected, the matrix D, contains no zero elements and 
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all three matrices are different. 
We continue the function (0 analytically through the interval 1,. We transfer the 2 

plane with the slits y = ~0, lzl> i by the conformal transformation o = E + IV) 3s + T/s'_ 

into the upper o half-plane (L = '/a(~ -I- w-l) is the Zhukovskii transformation). The 
correspondence between the boundaries and the points is as follows. The upper edges of the 
slits I,+ + Z,+ transfer into the rays L,' + L,’ =i: {I tl<i, EPA,, Bk) on the real axis of the 
W-plane with deleted points Ak, BI. ++ ac, bt; the intervals t,*$- La' = {I e [<I, ~#A,~,Bk-l) 

correspond to the lower edges of the slits Zr-+ I; . The segment [-I,11 transfers into a 
unit semicircle located intheupper half-plane o (the points z=fi' remain fixed) so that 
the upper (lower) z half-plane transfers into the exterior (interior) of this semicircle. We 
shall also keep in mind the following asmyptotic forms 

w (2) ry 22, y > 0; w (2) w (22)-l, y < 0 (z + 00) (1.4) 
For V) =0 it follows from (1.2) (we do not alter the notation of the functions) 

Im (Do) = f (6h I E I > 1; Im W) = -f (EL I E I C 1 
D-D,, E E L, = L,’ + L,‘. m = 1,2 

The case (1.3) is a non-trivial modification of the problem when the conjugation sign in 
the boundary condition for I E I < 1 can be removed and theproblem can be reduced to the form 

Im(D@) = a?(&), I El<= (1.5) 

g = (I% g,) = f GL I E I > 1; frill ce, = (-lY%l (iE) 
IEl-=i 

aJ (0) =qE), r/ > 0 (1.6) 

It is remarkable that the matrix coefficient D in (1.5) takes just two values on the real 
axis, the boundary condition on 1, transfer into (1.6), i.e., in the class of additional 
conditions of the Rielhdann-Hilbert problem (1.5). 

The piecewise-holomorphic vector 

Y(o) =D+D(~), rl>O; Y(w)-m, ?<O 

on the jump lines r)= 0 should satisfy the conjugate conditions 
(1.7) 

Y+= D'Y- + 2iBg (L,), Y+ = Y- + 2ig (L,) 

(1.7) 

resulting from (1.5) and 

(1.8) 

where the plus (minus) superscript denotes shrinkage from above (below! on the n = 0 axis. 
Ry virtue of the non-degeneracy of the matrix D, and the condition d,,# 0 we have a#O, I,=. 
The linear substitution Y = TU', where T is a diagonalizing matrix, results in a split 
conjugate problem forthepiecewise-holomorphic vector w= (WI, W,) 

w+ = AU-+- 2iW” (L,), u” = U'- + 2iw" (L,) (1.9) 

W (E) = T-‘Bg (I) (L,), W”(E) = T-‘g (t) (Ls) 

D;‘TU’(o)=D~‘TU’(l!a), TW(o)=Tm (1.10) 

We obtain the totai equivalence of problem (1.91, (1.10) to the initial formulation (1.11, 
(1.2) by subjecting the behaviour of the function W(w) at the singularities to estimates that 
follow from (1.1) and the definitions of this section, and by requiring the vanishing at 
infinity according to (1.4). It follows from (1.3) that the indices of the singularities of 
the canonical solutions /2, 8/ near the points z = +I should be (0, --'/,). In other words, 
the matrices D are chosen such that the discontinuities in the boundary conditions at the 



727 

points +l will generate just root singularities in the function Co(i). Then the functions 
a(o), Y(o), W(u) have a simple pole at the points o =fi. Estimates of the behaviour of 
these functions near the singular points Afl,Bf'#fl are analogous to (1.1); the behaviour 
of W(u) at zero is controlled by the first equation in (1.10). The class of analyticfunctions 
with the above-mentioned khaviour near the points o = 0, w,fi, A?, j!&@ and a discontinuity 
on rl = 0 will be denoted by HW. 

Eqs.(l.9) are conditions for two independent scalar linear conjugate problems, and the 
matrix A is daigonal. We seek the general solution of problem (1.9) in the class Hw in the 
form of the sum of the particular solution of the inhomogeneous problem and the general solution 
of the corresponding conjugate homogeneous problem /8/ 

(l.ii) 

(1.12) 

The auxiliary functions G here cancel the discontinuities in the coefficients of the 
problem at the points A?', Bif’, the purpose of the function F is to ensure the presence of 
poles in the solutions at the points j=i, and R are rational functions in place of polynomials 
/0/ since the quantities G,,,O will be defined as canonical solutions of the class h, /8/ 
multiplied by polynomials, nlQ O,n,> 0; rim’ are arbitrary complex constants. 

The following properties of the free term w(E) are needed later: 

Unlike the cases studied /2/, two (and not one) additional requirements (1.10) must be 
satisfied. The first is the trace of the boundary condition on 1, from (1.21, and the second 
is the condition of continuation of Y(O) through the real axis. The vector components W in 
these relationships remain connected; however, the general principles of constructing the 
solution of linear conjugate problems when there is an additional condition of the type of a 
continuation condition /2/ transfer to the case under consideration. 

(1.13) 

Suppose WEZfw and Y = Z’W are certain solutions of (1.9) and (1.8). The vector 

Y,(~)=V,(Y(u) + Y(a)) is also a solution of (1. la), and moreover, is subject to the rule 
of predetermination from (1.7). Let us form the function 0, (0) == D,Y,(o). It can be proved 

that the linear combination @((o)= 'i,(@,(o)+ @,l/ij,) satisfies (1.5) and (1.61, i.e., all 
requirements of the problem. Therefore, by acting according to these general rules the 
solution of the original boundary value problem can be obtained, but it will be awkward. We 
achieve substantial simplification of the formulas by a special selection of the functions 
F, G, R such that the solution (1.11) will at once by subjected to the conditions (1.14) that 
are equivalent to (1.10) 

WI (0) = W, Co), W, (0) = W, (lb), a > 0 
W, (0) = ul,), W, (0) = W, (iii), a < 0 

(1.14) 

The desired solution will then be expressed in terms of one component W,(o) by means 
of the formulas 

We substitute (1.11) into (1.14). Taking account of the properties of the eigenvalues 
of the matrix 0' indicated in (1.9) and (1.13), we see that (1.14) and (1.15) are valid if 
the functions G, F and R are selected taking conditions (1.16)-(1.18) into account 

a>0 (1.15) 

I , a<0 

G1 (0) = m), G, (0) = Gl(iTo), a > 0 

G1 (co) -m), G,(O) =r@), a<O. 

(i.i6) 
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(analogous equalities hold for the function CR(o)) 

R~(0)=7Wj=+w%Wh a>0 
R~(w)=R~@)=~~~R~), a<0 

Here n is any integer and the signs are matched. 
We construct the auxiliary functions G,,," from cofactors of the form 

[tAh -0-1) (o - &)]‘m-’ [(Ak - o)(o-1 - &)I-‘“‘, a-i [O, 11 

(Y” should be substituted for y,,, - i when 0< a< i) 

The products of N 

Ink, 

1 

&+%, aE[O,%l 
%S==_2n= 5 

mt aEfO,U 

6 _ ~I&1 
m-7, a>0 (m=1,2) 

&=(-i)n(+$- -+), O<arg&<2n, j6ml<+ 

a<0 

such cofactors satisfy the factorization condition (1.12) and tha 

(1.17) 

(i.f8) 

fi.19) 

symmetry condition c1.16). We draw the slits to extract the single-valued branches of the 
functions Go* (and G,(O)) along L, = {AkBgJ + {BtslAk-*) and we fix the choice of the branch 

of cofactors of the form (Ab-c~+l)~m and (co*‘-Bk)‘m by the condition I'm = 1. The increments 
arg(Ar- 0.t') and arg(o*r-- B) during traversal of the points A$-',B,** from the upper to the 
lower edge of the slit are respectively equal to -&!n and T2n. 

The functions G,(o) are constructed analogously. Conditions for the existence of the 
integrals I,(o) of (1.11) and the disappearance of the solution at infinity are additionally 
taken into account in selecting the functions G,(o), F,(o). They are consequently sometimes 
drfferent from the functions G,*(w). F,'(o). 

We have the following behaviour of the functions near the singularities a++i,w: 

0 (2) - (2 - a)-'m, where the exponents vrn defined in (1.19) take complex (Rey, = ii!!), imaginary, 
or real (O<y,< 1) values depending on a. 

We present formulas for the auxiliary functrons by making the location of the interval 

lo and the point z = oi: specific relative to the s*ubsets f, and 1,. 
1) The section I, is surrounded sf the intervals E 1, (ak # - 00, f; &* # --1, 0~; k = 1, . .., 

iv). 
Conditions il.l2i, (i.16)-(1.10 realize the functions 

G,"(o)=IJ,@o)IT(ti), G,(o)==&(o)IT(w) (1.20) 

(1.21) 

Assuming, for simplicity, that the quantities I(I) decrease no slower at infinity than 
i!z, we can establish the existence of the integral in (1.15) and that the solution decreases 
as i/z as z--cm. 

The total index of the initial problem x equals the sum of the orders of the singularities 
of the canonical solutions at all the singularities 2 =I ek, 4, +i /2/ in this case 

x = 2N + 1, aF IO, 11; x = 1, a El& 11 

and equals the numbercf freereal constants in the solution (1.15). This is in agreement with 
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the general assertions about the number of linearly independent solutions of the Riemann- 
Hilbert problem /2/. 

2) The interval Za delimits both & and k. Let one of the points *i be the Common 
boundary point of 4 and 4, while the other point Ti is the cossson boundary point for ?e and 
1 i.e., either se= -+i or 9=-i, where p.q take one of the values i, 2, . . ..N (the 
&per or tower signs are taken everyhere) V The quantities 

a>i: 
rk==P,t, k==-N,...,N--ii, a<0 

are subject to change in (1.20) and (1.21). 
Since the functions &,(a) acquired a pole at one of the points =fri, the functions F,,,(o) 

should have lost it. 
The index of the problem was decreased by one in the case a= [O,il as compared with the 

modification 11, and the behaviour at infinity remained as before. 
3) Discontinuity of the boundary conditions at infinity; 4 delimits only 4. 
Let a, = Al = -60, sk p 1, 4 # -1 and let the behaviour of the solution at infinity be 

irregular. Constructing auxiliary functions anew (the result can also be obtained by a 
special passage to the limit A,-, -00 in (l.ZO)), we see that the expressions for the 
functions n fo), I&(o) differ from (1.20) in the absence of those factors in which the quantity 
AI occurred, while (1.21) remain valid. At infinity 

Ww, co) - t0+‘*4m), a 7E (0, i 1; W, (0) - co-(‘+‘m), a E] 0, 1 [ 

If the vanishing of the solution no more slowly than IzI-r is required, then the number 
of linearly-independent solutions is reduced by two (a?? [O,ll) and summation in (1.21) should 
be performed between --Nf i and &'-I. 

The cases IarI<cu, b, = OQ and luzl = bB = 00 are contained analogously. The 
appropriate cofactors are discarded from the products (3.20) and the limits of the summation 
in (1.21) are selected, as usual, depending on the behaviour of the solution at infinity. 

4) Discontinuity in the boundary conditions at infinity; 4 delimits both 1, and I,. The 
passage 3) * 4) is analogous to the passage 1)+ 2). 

The solution of problem (1.2) can be constructed by the same method in other function 
classes, for instance, those bounded near certain points akr b* (the solvability question is 
examined analogously ~'2, B/I, The result can be extracted directly from the solution obtained 
for the class & by letting the coefficients in the appropriate asymptotic forms go to zero. 

2. We will consider certain problems onthe deformation of a composite elastic plane that 
converge to problem (1.1), (1.2). The straight line separating the elastic properties y -0 
is divided into a system of intervals 4 (see Sect.11 on which conditions of three kinds are 
posed: any combination of conditions l"-3' on lx and &,and one of the conditions 4O or 5O 
on la. 

lo f Normal and tangential stresses 

fo; + %y) ($3 *ot = @ (*I = (-P + fT)f @I 

are applied to the slot edges. 
2o . 'Ihe displacement vector 

(u f iv) (I, _cO) = h* (2) 
is given. 

30. Total contact conditions 

lo,1 = I&J = lul = Iv1 = 0 
are satisfied. 

40 . A shear stress is given and continuity conditions are satisfied for the normal 
displacement and stress components 

50 
r,(r, &O) - +(z), [a,] = Iv] = 0. 

. The shear stress and normal displacement are given 

7, (2, &,o) = r+ (I), v (t, lot - *o (2) 

Here the square brackets denote a jump in the quantity when passing from the upper to the 
lower edge. 

We consider the stresses to vanish at infinity (a homogeneous stress field at infinity 
can be expected). 

We use complex representations of solutions near to those considered in /9/ 
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almost everywhere lim yX,’ (z) = 0, m = I, 2; X’ = dX/dz . 
Y-0 

-rtry fz, +O) = Im Xl* (~1, ay (z, &O) = Re X,* (z) 
u,* (2, 20) = --Re {WX, (I) + P)X, (z)}f,* 

v,+ (2, +w = Im {0X, (I) i_ W)X, (2))‘; 4p,a(j) = 1 - 

%I, 4p,b(j’ = i -+ %J 

The functions X,(t) are regular in the plane I, except at points of the real axis, have 
a limit as Y-,&-o almost everywhere, are subject to the estimates (1.1) near the singular 
points (xqh m) and vanish as e_* m; the superscript j = I (j = 2) fixes the parameters of 
the medium occupying the half-plane y> 0 (P<O), p, are the shear moduli, xj = 3-4~~ (plane 
strain) , %j = (3 - vJ) (i -+- vJ)‘l (generalized plane state of stress), vJ are Poisson's ratios. 

3. We will show in more detail the transition from the problem combinations of boundary 
conditions 1", 3", 4" of the bonding line is weakened by a system of slots 1, and by a transverse 
shear crack k(& delimits only &) or one of the slots goes over toa shear crack (& delimits 

4 and 1%) or the edges of one of the slots makes contact on the section 1% (4 deLhiits only 
4). 

Let loads be applied symmetrically first: g' (2) = g7 (2). Then by virtue of 1', 3", 4" and 
(2.1) the following continuation conditions hold: 

x, (2) --L -x,, x* (2) = X, (3.1) 

which enables us to consider the problem in just the upper half-plane. The boundary conditions 
take the form 11.2) if the load on lo is reduced first by subtracting the solution of an 
auxiliary problem. Assuming *(fr) = 0, CCE .$ for simplicity, we arrive at problem (l.l)- 
(1.3), where 

dl,, = a,, = 6 d,, = a,, = 4, d =t a(') - a(2) 

4 = bc’) -+ b(Z); 1 (3) = g+ (I), I E I,; f (z) = 0, 2 E t, 
a=qW2>1, Al= (d - q)i(d j q) < 0 (s = -i) 

(3.2) 

If the shear crack is isolated, then by a linear substitution of functions the problem is 
reduced to modifications examined in Sect.1. However, it is simpler to use the results (1.20), 
(1.21) directly by taking intc account that in this case the ailxiliary f;mction n,(o) has a 
pole at the points 0 = Ai, while the function n,(o) has the pole at the point o-i. The 
expresslon for F"(o) changes: F"(O)= I. The principal vector of the forces applied to the 
boundaries equals zero, and X,(z)= 0 (t!?) as a- 00 /lo/. For aI* + b~¶< 00 (the bonding 
sections have a finite perimeter; the summation in (1.21) should be performed from f - N to 
N- 1. xf Q,= --03, bN = bo fall the slots have finite length), then the factors containing 

=I and bN are discarded fron the products in (1.20; and the limits of the summation in 
(1.211 are 2 -N and N-2. Other modifications are analogous to case 3) from Sect.1. 

Let & delir.it just 1, (CL I, and &). In this case the formulation of the problem 
with contact boundaries not known in advance is physically meaningful (the ends lo*, where 
I* This additional n are the corresponding sections in the laboratory system of coordinates). 
complication of the problem is overcome by the usual means. Determining lo* in a certain 
manner, we execute the coordinate system transformation for which le*-+ &. The unknown 
coordinates of the boundaries I,* enter the subsequent formulas as parameters. Additional 
conditions in the form of the inequalities 

ou - aye < 0, 5 E lo; [VI + 6" ;zra 0, 2 E 1, 

moreover occur in the problem, where ay 'is the reduced normal stress and 6" is the initial 
slot gap. Continuity of the stresses at the us&own points follows from these inequalities. 
Equating the corresponding s tress intensity factors to zero, we obtain an equation to determine 
the coordinates of these points. The unique roots are selected in verifying the inequalities 
mentioned /7/. 

The complex constants rk are determined from the condition of single-valuedness Of the 
displacements when taking account of the relations metnioned in (1.21) similar to /6, lo/. 
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Thus in the case of an isolated shear crack and slots having finite perimeter, we obtain two 
conditions for the single-valuedness of the components u and v for traversal around each 
slot, and one condition for thesingle-valuedness of the component LI for traversal around the 
shear crack. In all we have 2N- 3 independent equations to determine m-3 real free 
constants. The question of the uniqueness of the solution is thereby'exhausted. We note 
that the uniqueness of the solutions of certain problems of elasticity theory with indeterminate 
points of boundary condition separation is established in /ll/. 

When there is no symmetry (g+ (2)# g-(z)) we consider first the following auxiliary prcblem 
for the vector components 8 = (6,,6,) in order to reduce the inhomogeneities in the boundary 
conditions at Ze and l, (6(z)+ 0, Z-B w) 

The solutionsofthese problems can be expressed simply in terms of Cauchy-type integrals 
Do/. 

For a piecewise-holomorphic vector Y(z)= X(2)--b(z) the continuity conditions ImY,’ = 
Im V, and RI? Y,+ = Re Y,- will be satisfied on the whole real axis, and therefore, 
continuation conditions analogous to (3.1) will hold. Consequently, we obtain the problem 

Im Yyl+ = 0, Im Yu,+ = f0 (2) (4) (3.3) 
Im (DIY+) = f (z) (I,), Im Y,+ = Re Y,+ = 0 (In) 

to determine the vector y (s) I analytic in the upper half-plane,wherethe matrix D, is 
determined in (1.3), (3.2) and jo(z),f(r) are expressed in terms of the boundary values of the 
functions 6,(t). 

For the final 
boundary condition 
0 = (Yl, Y, - Yo), 

The principal vector of the external forces (X,Y) can be differeent from zero. The 
asymptotic form of the solution at infinity is determined by the formulas /5/ 

reduction of the problem to the form (1.21, the inhomogeneity in the 
must be reduced by lo from (3.3). This can be done by forming the vector 
where 

- Re Ug+ IL,+I, = 0 

xk. (5) = 
yrjx 4ymj1 

nzS +0(G) (1, k, m=l, 2; k#m) (3.4) 

a- 
yljX - I~,~Y * ST* 

, a- Y#jxmf (VljyTsp*:) 
n:S NS 

Y’k 00 
X=T--TT, Y=P+-P-, S-#-q2 

T*= 1 Tf(z)dz, P* =s p*(z)dz 
L-6 1, 

Yll = _Q(z)~ - bWq, ylz = a")d_ &l'q 

yo2 = DA= a 
(1,&21 + acz,p, 

The upper signs are taken and j = 1 for y> 0, and the lower signs and j = 2 for y< 0. 
It can be confirmed that conditions (3.1) are satisfied for the asymptotic forms aI(z) and 

@, (2). 
Compared with the previous case, the solution has a weaker decrease at infinity, the 

number of real constants to be determined has increased by two. But even the number of 
independent conditions, including the previous conditions for single-valuedness of the 
displacements during traversal of the contours lo,!, and the elements (3.4) grew just as much 
(we recall that conditions (3.4) include the conditions for single-valuedness of the 
displacement vector during traversal of the contour enclosing the whole interval lo+1, 15, 
lO/). 

Remark. If the shear stress is not given explicitly on thesection l,,but is expressed 
in terms of another unknown function (for instance, a dry friction condition is posed), then 
the representations obtained can be used to derive the integral equation of the problem for 
one unknown function. 

Other problems are examined analogously. The cleavage case (without friction) for one of 
the slots by a rigid insert with a given contact zone corresponds to this combination of 
conditions l",Y,SO. The set of conditions 2".F,C (or 5O) corresponds to the problem of a 
system of sealed-in thin stiff inclusions and one delamination section. In solving this problem 
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it is more convenient to go over to other complex representations 

ru=AQX(r), AWe (&, oF=-‘E=& @ =-‘,o =i aG) 

u,% (2, *O) = ReYs* (z), u+= (z, *:O) = Im %* (I) 

A closed-form solution can also be obtained in studying the question of contact (with 
slip) of two half-planes loaded by stresses at Z,, by displacements (1*,20,4') at J,, and in the 
problem of the action of a system of stamps that adhere to a half-plane and one stamp with 
slip in the half-plane (l', 2", 5'). 

We limit ourselves to a remark concerning the solution of the above-mentioned problems 
with defects on the interface under the action of just a homogeneous stress field at infinity. 
In this case it is best to seek the solution under the condition at infinity (B =-d/q) 

XI = pa,” + ir;, + 0 (I-*), XI = eyO + i& + 0 (I-*), y > 0 (3.5) 
The principal part of the asymptotic form (3.5) is the homogeneous solution for a composite 

elastic plane without defects (we take condition (3.1) into account) 

aI = or, Q" = TO&, Iul < = 
e.&= (i- 2g)ay~, u>o, e,-(i+28)e,@, Y<O 

The solution (l.ll), (1.15) will not contain integrals but in the summation limits the 
N should be replaced by N+i (formulas (1.21) and (1.22) 1. Condition (3.5) is used to determine 
the excess constants. 
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